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By Kenneth W. Goodam and W i l l i a m  D. M o r r i s o n ,  Jr. 

As part of an NACA tranamlc research program, a series of 
wing21odg canbination3 a r e  being  investigated in the Langley 
high-speed 7- by l k f o o t  tunnel over a Mach number range of 0.60 
t o  1.18 ut iuz lng   the   t ranaanidwtp   tecmq- .  

This  paper  presents the resul ts  of the investigatim of a 
wfng alone and a wbq-fmelage cCPlibination employing a wing with 
an unswept quarter-chord lfne, aspect  ratio 4, taper   ra t io  0.6, 
and an ESACA 69006 a i r f o i l  section. Id-, drag, pitching mcment, 
Etna root bending mament were obta.€ned for these  canfigurations,. 
Effective downwash angles and dynamic-pressure characteristics 
were also obtained far these  colrfiguratione for a range of t a i l  
heights in the  region of a probable t a i l  l-tion. In order t o  
expedite  publishing these data, anly a brief  analysis is included. 

A series of wings le be- investigated in the langley 
highdpeed 7- by 1o"foot tunnel  to  study the effects of w i n g  
gecanetry an the wingdlane 'and wing-fueelage longitudinal  stabil i ty 
characteristics at transonic speeds. The 881118 -elage is be- 
used for a n  w i n g s  teeted in this series.  A Mach number range 
between 0.60 and 1.a is obtained by uti l izing  the trarsonic4mq 
technique. 
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T h i s  paper  prasents the reeulte of the investigaticm of the 
w i n g - a l o n e  and of the wing-fuselage collfiguratiane employing a 
w i n g  with an unswept quarter4hord Une, aspect   ra t io  4, taper 
ratio 0.6, and an NACA 69006 airfoil s e c t i m  paraliel to the 
a i r  stfeam. The resu l t s  of closely related sweptback-wine; investi- 
gations, which are part of the  present transmfc program, are  
presented in references 1 to 3.  

The wing of the semispan model had 0' of sweepback referred 
t o   t h e  q u a r t e x h o r d  line, a t ape r   r a t io  . o f  0.60, an aspect r a t i o  
of 4, and an NACA 69006 a i r fo i l   sec t ion  parallel t o  the free stream. 
The wing was made of beryllium copper and tb. .f'uselage of. b.ra8e. . . 

A tw+view drawin@; of the model i5 presented in figure I, and. 
ordinates of the  fuselage of fineness r a t i o  10 can be found i n  
tab le  I. 

.- 

T h e  m o d e l  was mounted cril an e lec t r i ca l  s t r a i m g e  balance 
enclosed in  the buurp, and the lift, drag, pitching mcanent, and. 
bending mcanent about the model plane of .e,ymaetry were Gasursd 
with potenticeneters. 

A total+ressure rake wae employed t o  determine point dynamic- 
pressure r a t i o s  for a range of tail heights in a plane which 
contained the 2>percen~an-aercd.ynamic-chord point of the 
free-floatin@; tails. T h e  tcrtal-pressure tubes were spaced 1/8 inch 
a p r t  near the wing chord l i ne  extended and 1/4 inch apart elsewhere. 

A f e w  surveys were also =de in a sp&nw5se plans at the flame 
longitudinal lmatian as the  previously  discmsed surveys. T h e  
rake utilized for these.additional surveys had a tube spacing 
of 1/4 inch. 
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TESTS 

' T h e  te8ts were -de in the  langley high-epeed 7- by 1CLfoot 
tunnel ut i l iz ing  an adaptation of the NACA wlng-flar technique for 
obtainin@; transonic speeds. The technique used involves  placing 
the m o d e l  in the high-velmity flow field generated over the curved 
surface of a bumg an the tunnel floor. (See reference 4. ) 

Ty-pical  contours of loca l  Mach number in the viclni ty  of the 
m o d e l  location cp1 the bump, obtained frm 8urveyEi with no m o d e l  
in positfan, are shown in figure 6 .  It is e e a .  .that there i e  a 
Mach nrnriber variatian of about 0.05 over the d e l  e a m i s p n  a t  low 
Mach nwnkers and fram 0.07 t o  0.08 at  the hie;her-&ch nurdbers. The 
chordwise  bhch number variatim i B  generally lese than 0.01. No 
attempt has been made t o  evaluate the effects  of this chordwise 
and spanwise Mach number variatian.  Note that the lq-dashed 
lines shown near the root of the wing ( f ig .  6 )  r e p r e e a t  a local 
Mach nmber 5 percent below the maximum value and indicate the , 

extent of the bump boundary Layer. The effective test  m c h  number 
was obtained frm contour  chart8 similar t o  those  presented  in 
figure 6 using the relatianship 

. 

. 
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The variatian of mean test Reynolds number with Mach rimer 
l a  shown in figure 7-  The boundaries in the figure  indicate the 
range in Reynolds n m e r  -cam& by variations in etanospheric test 
conditiom in the course of the  investigation. 

Force and m n t  data, effectfve dawnwash angles, and the 
r a t i o  of dynamic pressure at  25 percent of the mean aeroQnamic 
chord of the free-floating taib t o  free-stream dynamic preseure 
were obtairkd for the m o d e l  wfng-alone and wing-fuselage ccmfigura- 
t f m  tested through a Mach nmiber range of 0.60 t o  1.18 and an 
a n g m f - a t t a c k  range of - 2 O  t o  120. A f e w  surveys were also made 
t o  determine the spanwise variation of wake W c  pressure at e 
Mach  nuniber of 1.10. 

The end-plate tare correctians t o  the drag and t o  the dmwaah 
data were obtained through the test Mach'  number range at  0' angle 
of attack by testing the m a l  configurations  without end plates. 

chord and the bmnp surface, and a sp,onge -per seal was fastened 
t o   t h e  wing butt  beneath  the  surface . o f  the bump t o  minimize 
leakage. The end-late tares were assumed t o  be constant  with 
angle of attack, and the  tares obtained a t  zero  angle of a t 6 c k  
were applied t o  all drag and downwash data. JetSbomdary corrections 
have not been evaluated because the boundary condftione t o  be - 
sat isf ied are not rigorously defined. However, inaamuch as the 
effective flow f i e ld  is large canpared with the span and chord of 
the model, the corrections are believed t o  be small. No base- . 
pressure correction has been applied t o  the *-fuselage drag data. 

, A gap of about 1/16 inch was rmintained between the wing root 

By measuring t a i l  floating angles without a model installed, 
it was determined that a tail spacing of 2- inches would produce 
negligible  interference  effects of reflected shock waves on the. 
tail .floating angles. Downwash angles for the wing-alone 
configuration were therefore obtained ~.$multaneously far the middle, 
highest, and lowest tail positicrns 9n one aerfes  of tests and 
simultaneously for  the two intermediate positiana in succeeding 
runs. (See fig. 3 . )  For the wing-fuselage tests, the effective 
downwash angles at  the chord plane extended were determined by 
mounting a free-floating t a i l  on the center line of the fuselage. 
The downwash angles presented are increments Bcnn the tail fl-ting 
angles without a m o d e l  in position. It shauld be noted that the 
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flcrating angles measured are  a measure of the  angle-of-zero  pitchine 
mauen t  about the tail pivot  axis rather than the angle-of-zero lift. 
It has been estimated, however, that for this tail arralyl;ement a 
downwash gradient a0 large as  2O acrosa the span of the tail xill 
resul t  in an errar of less than 0.2O in the measured downwash angle. 

The total-presstre readings were ‘obtained at c w t a n t  angles 
of attack through the Mach number range without an end p a t e  on the 
model t o  eliminate end-plate wakes and w5th the support-strut gap - . 

sealed with a rubber sponge aea l  t o  minimize any 8trut”leakage  effecte. 
The- static-pressure  values used -In cmputing  the dgnamlc-.lpressure 
ratios were obtained by use of a s t a t i c  probe with no model in 
POHitim. 

A table of the figures preeentlng the results follaws: 

Figure 
Wing-alke force data . . . . . . . . . . . . . . . . . . . . .  8 
Wing-fbelage force data . . . . . . . . . . . . . . . . . . .  9 
Effective dmwash angles (wlngalane canfiguration) . . 10 
Effective dmwash an@;leB (wing-fuselage canfiguraticm) . . u. 
Downwash gradients . . . . . . . . . . . . . . . . . . . . . .  12 
Dynamic-pressure surveys . . . . . . . . . . . . . . . . . . .  13 
Spanwise dgnamic-pressure surveys . . . . . . . . . . . . . . .  14 
S-y of aerodynamic characteristics . . . . . . . . . . . .  15 

T h e  diacuersian is baaed on the summarized values given in 
figure 15 unlees otherwi~e noted. T h e  slopes summarized in figure 15 
have been averaged  over a l i f t -coeff ic ient  range of f0.1. 

L i f t  and Drag Ckaaracterietics 

The isolated-wiq lift-curve slope meaaured near zero lift 
was about 0.074 at  a Mach  number of 0.60 - Thia value canpares 
favorably with a value of 0.073 estimated far this Mach number 
using unpublished semispan data fo r  a geane t r i caUy  simllar m o i l e l  
frcm the -ley t w c d 3 n e m i o n a l  low-turbulence tunnel (R = 3.0 X lo6 
t o  12 .O X lo6) as a l m p e e d  point and applying a campreeeibility 
correction  as  outlined in reference 5.  The peak u r t - c u r v e  slope 
occurred a t  about M = 0.87 with a secondary peak at M = 1.03. T& 
addition of the fuselage generally bad arzly a slight  effect  an the 
lif’t-curve slope, although the peak liFt-cllrve slop was delayed to 8 
Mach number of about O.%. - 

. 
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Drag riee at  zero lift began at  a Mach number of about 0.87 
for both the-wing&lone and ving”fuselage cwfiguratim8. 

7 

The  lateral center of pressure for the w i n g  alone was located 
a t  42 percent of the s d a p a n  at  a Mach  number of 0.a at  uft 
coefficients below 0.5. The same lateral centemf+reseure lmticm 

I was obtained at  low speed and high Reynolds numbers in the Iangley 
twdimensional law-turbulence tunnel for a g e & t r i c a u  s u r  
model. T h e  lateral   center of preseure grad=- moved Outboard as 
the Subs&c speeb increased and wag located F t  about 44.5 percent 
of the semispan at M = 0.98. Between M = 0.98 and 1.05 there was 
a f a i r k  abrupt i n b a a  movement of ycp t o  41  percent of the samfspan 
and this value remained about constant up t o  M = 1.18. The  addition 
of the f’uselage moved F~~ inboard f’rcnn 1 t o  2 percent of the 
semispan through the Mach number range. 

PitChlng“canent C h a r a C t 0 r i S t i C E  

N e a r  the  zero l i f t  coefficient the -41- aerodpamic  center 

((a ) 
waa located at about 24 percent of the mean aerodynamic chord 

= 0.01 a t  low Mach numbers. The aera3dm.c  center moved 

forward’ about 3 percent of the mean aerodynamic chord as the Mach  number 
increased t o  0.84. In the epeed range between M = 0.84 and 1.03 

the aerodynamic center moved back to about 37 .percent mean aercdpxmlc 
chord and thereafter remained about constant up t o  M = LIB. The 
addition of the fuselage moved the aerodynamic center forward about 
7 percent me- aerodynamic chord a t  the lower Mach numbers and 
frm 4 t o  5 percent forward a t  Mach  numbere abme unity. By using 
the  theoretical methods of reference 6 ,  it was estj3nated that the 
fuselage would move the w i n g - a l a n e  a e r ~ ~ c  center forward  about 
6 percent mean aerodynamic chord a t  l& s u b s d c ‘  ejjieeds .. 

The downwash gradient &/& near zero l i f t  for the wing 
alone t a s  a maxbmm sl ight ly  above the chord plane extended throughout 
the Mach number range. (See f ig .  12. ) T h e  vari8t3.m of &/da with 
Mach-nmber for t a i l  positions of 0 and 30 percent & the samiapan 
above m d  below the chord line extended was quite similar t o  the 
1if”curve”slape variation wlth Mach nWer  in that a double peaking 
was present a t  about the same Mach numbers. (See fig. 15.) Between 
the peak values of damwash gr8dien-t which occurred a t  M = 0.90 
and 1.02, a rather rapid variation of a€/& w i t h  Mach number is 
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indicated. When the fuselage was added t o  the isolated vfng 
these large changes in downwash slope were not evident. 

The resul ts  of the  pofnt dynamic-pressure eurveys mde in 
a ver t ica l  plane containing the 2~ercentdnean-aerodynamic-chord 
point of' the  free-flaating tails used in the downwash sumeye 
are  presenked in figure 13. Below a Mach number of 0.95 there 18 
very l i t t l e   d i f fe rence  in the wake characteristics of the wing- 
alone and wingduelage can f igu ra t im  except that   larger wake 
loseee are M i c a t e a   a t  OL = loo far the- w - m e b g e  ccmdIttan 
because of a more fully developed  call. A t  the Mach  rurmbera 
above 1.00 a t  moderate and high angles of attack, however, the 
wake aesociated with the wing-fumlage cmfigura t im was mch 
more exbensive than  the corresponding isolate-ng wake (fig. 13) .  
In order to gain further iaformatim  cmcerning the poseribh 
cause of these wake differences, a f e w  Elpanwise a m e y e  were mde 
a t  the same tail length used for the vert ical  a m e y e .  The 
resul ts  of these  additional surveys (fig. 14) indicated that, although. 
the  isolated-wing wake losses a r e  practically  conatant a l q  the 
span of the tail, a very large epanwlse dynamic-pressure gradient 
was present  near  the  fuselage. The flagged symbols plotted in 
figure 14 represent the data obtained frcm figure 13 for the ~ g ~ m e  

survey location. It, i s  apparent *an the coarparieoa .of the two 
Set8 of data that, while the wake m e a s u r ~ t s  behind the wing alone 
could be repeated,  the wake characteristics behind the wing"fusebge 
canbination could. not be repeated. These discrepncles in vake 
behavior a s  well 8 s  the steep gradient in aynamic pressure close t o  
the whg-fiselage juncture may be attributable t o  uneteady flow 
conditions induced by shock formatims and separatim a t  the wing- 
fuselage  juncture. 
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Figure 4.- A pictorial  view of a 0' sweptback wing, aspect ratio 4, 
taper r a t i o  0.6, and WLCA 6sOO6 a i r f o i l  section sharing fie+ 
floating tam. - 
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Figure 5.- A pic tor ia l  view sharing spOng&peHeal instal la t ion 
on the model with Oo swept’r;ack wing,  aspect r a t i o  4, taper r a t i o  0.6, 
and NACA 65AOO6 a i r f o i l  section. - 
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